banner



Openstax Calculus Volume 3 Solutions

Checkpoint

3.1

r ( 0 ) = j , r ( 1 ) = −ii i + 5 j , r ( −four ) = 28 i 15 j r ( 0 ) = j , r ( 1 ) = −2 i + 5 j , r ( −4 ) = 28 i 15 j

The domain of r ( t ) = ( t 2 3 t ) i + ( 4 t + 1 ) j r ( t ) = ( t two 3 t ) i + ( 4 t + 1 ) j is all real numbers.

3.3

lim t −ii r ( t ) = 3 i 5 j k lim t −2 r ( t ) = iii i five j k

3.4

r ( t ) = 4 t i + 5 j r ( t ) = 4 t i + v j

3.5

r ( t ) = ( 1 + ln t ) i + five due east t j ( sin t + cos t ) k r ( t ) = ( 1 + ln t ) i + 5 eastward t j ( sin t + cos t ) k

3.6

d d t [ r ( t ) · r ( t ) ] = eight e iv t d d t [ r ( t ) · r ( t ) ] = eight eastward iv t

d d t [ u ( t ) × r ( t ) ] = ( east 2 t ( cos t + 2 sin t ) + cos ii t ) i + ( e two t ( 2 t + ane ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k d d t [ u ( t ) × r ( t ) ] = ( e ii t ( cos t + 2 sin t ) + cos 2 t ) i + ( e 2 t ( 2 t + 1 ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k

3.vii

T ( t ) = 2 t 4 t two + 5 i + ii 4 t ii + 5 j + 1 iv t 2 + five one thousand T ( t ) = 2 t 4 t 2 + five i + ii four t two + 5 j + 1 4 t 2 + 5 thou

iii.viii

ane 3 [ ( 2 t + 4 ) i + ( 3 t 2 4 t ) j ] d t = sixteen i + ten j 1 3 [ ( two t + 4 ) i + ( 3 t 2 4 t ) j ] d t = 16 i + ten j

3.ix

r ( t ) = iv t , 4 t , 3 t 2 , r ( t ) = 4 t , four t , three t 2 , so due south = 1 27 ( 113 3 / 2 32 iii / 2 ) 37.785 s = one 27 ( 113 3 / two 32 3 / two ) 37.785

3.10

southward = 5 t , southward = 5 t , or t = s / 5 . t = s / 5 . Substituting this into r ( t ) = 3 cos t , 3 sin t , iv t r ( t ) = 3 cos t , 3 sin t , 4 t gives

r ( southward ) = 3 cos ( south v ) , 3 sin ( due south v ) , 4 s 5 , s 0. r ( s ) = 3 cos ( due south 5 ) , 3 sin ( s v ) , 4 s 5 , s 0.

3.11

κ = six 101 3 / 2 0.0059 κ = vi 101 3 / two 0.0059

3.12

N ( ii ) = 2 2 ( i j ) N ( 2 ) = 2 two ( i j )

3.thirteen

κ = four [ 1 + ( 4 10 4 ) ii ] 3 / 2 κ = iv [ ane + ( 4 x 4 ) ii ] 3 / ii

At the bespeak 10 = 1 , x = 1 , the curvature is equal to four. Therefore, the radius of the osculating circle is one 4 . 1 4 .

A graph of this function appears next:

This figure is the graph of the function y = 2x^2-4x+5. The curve is a parabola opening up with vertex at (1, 3).

The vertex of this parabola is located at the betoken ( one , three ) . ( 1 , 3 ) . Furthermore, the middle of the osculating circle is direct in a higher place the vertex. Therefore, the coordinates of the center are ( 1 , thirteen 4 ) . ( 1 , 13 4 ) . The equation of the osculating circumvolve is

( x 1 ) 2 + ( y xiii 4 ) 2 = 1 xvi . ( x 1 ) 2 + ( y thirteen iv ) 2 = ane 16 .

3.14

5 ( t ) = r ( t ) = ( ii t three ) i + 2 j + grand a ( t ) = v ( t ) = ii i v ( t ) = r ( t ) = ( 2 t iii ) 2 + two 2 + one 2 = iv t 2 12 t + fourteen v ( t ) = r ( t ) = ( 2 t 3 ) i + 2 j + k a ( t ) = v ( t ) = ii i v ( t ) = r ( t ) = ( 2 t 3 ) 2 + 2 ii + i two = iv t ii 12 t + 14

The units for velocity and speed are anxiety per second, and the units for acceleration are anxiety per second squared.

3.15

  1. five ( t ) = r ' ( t ) = 4 i + ii t j a ( t ) = v ' ( t ) = 2 j a T = two t t 2 + 4 , a N = 4 4 + t two v ( t ) = r ' ( t ) = iv i + ii t j a ( t ) = v ' ( t ) = 2 j a T = 2 t t 2 + iv , a Due north = 4 4 + t two
  2. a T ( −3 ) = 6 thirteen 13 , a N ( −iii ) = 2 thirteen 13 a T ( −3 ) = 6 13 13 , a N ( −3 ) = ii 13 thirteen

3.17

a = 1.224 × 10 ix one thousand 1,224,000 km a = 1.224 × 10 9 m one,224,000 km

Section 3.ane Exercises

i.

f ( t ) = 3 sec t , g ( t ) = ii tan t f ( t ) = iii sec t , g ( t ) = 2 tan t

5.

a. ii 2 , 2 2 , 2 2 , ii 2 , b. i 2 , 3 ii , ane 2 , 3 ii , c. Yes, the limit as t approaches π / 3 π / iii is equal to r ( π / three ) , r ( π / 3 ) , d.

This figure is a graph of a circle centered at the origin. The circle has radius of 1 and has counter-clockwise orientation with arrows representing the orientation.

7.

a. e π / 4 , two 2 , ln ( π 4 ) ; e π / iv , two 2 , ln ( π 4 ) ; b. e π / iv , 2 2 , ln ( π 4 ) ; e π / 4 , 2 ii , ln ( π iv ) ; c. Aye

9.

e π / two , 1 , ln ( π two ) due east π / 2 , 1 , ln ( π 2 )

11.

2 e ii i + 2 east 4 j + ii g 2 eastward 2 i + 2 e 4 j + 2 k

xiii.

The limit does non exist considering the limit of ln ( t 1 ) ln ( t 1 ) equally t approaches infinity does not exist.

xv.

t > 0 , t ( 2 k + 1 ) π 2 , t > 0 , t ( 2 chiliad + i ) π 2 , where k is an integer

17.

t > 3 , t due north π , t > iii , t n π , where n is an integer

21.

All t such that t ( one , ) t ( 1 , )

23.

y = ii x 3 , y = 2 x 3 , a variation of the cube-root function

This figure is the graph of y = 2 times the cube root of x. It is an increasing function passing through the origin. The curve becomes more vertical near the origin. It has orientation to the right represented with arrows on the curve.

25.

10 2 + y 2 = nine , x 2 + y two = ix , a circle centered at ( 0 , 0 ) ( 0 , 0 ) with radius three, and a counterclockwise orientation

This figure is the graph of x^2 + y^2 = 9. It is a circle centered at the origin with radius 3. It has orientation counter-clockwise represented with arrows on the curve.

29.

This figure has two graphs. The first is 3 dimensional and is a curve making a figure eight on its side inside of a box. The box represents the first octant. The second graph is 2 dimensional. It represents the same curve from a


Notice a vector-valued role that traces out the given curve in the indicated management.

31.

For left to right, y = x 2 , y = 10 two , where t increases

33.

( fifty , 0 , 0 ) ( 50 , 0 , 0 )

39.

One possibility is r ( t ) = cos t i + sin t j + sin ( iv t ) k . r ( t ) = cos t i + sin t j + sin ( 4 t ) k . By increasing the coefficient of t in the third component, the number of turning points will increase.

This figure is a 3 dimensional graph. It is a connected curve inside of a box. The curve has orientation. As the orientation travels around the curve, it does go up and down in depth.

Section iii.2 Exercises

41.

iii t 2 , 6 t , 1 2 t 2 3 t 2 , 6 t , one 2 t two

43.

e t , 3 cos ( 3 t ) , v t east t , 3 cos ( three t ) , 5 t

45.

0 , 0 , 0 0 , 0 , 0

47.

−1 ( t + ane ) two , 1 i + t 2 , three t −1 ( t + ane ) 2 , one 1 + t 2 , iii t

49.

0 , 12 cos ( 3 t ) , cos t t sin t 0 , 12 cos ( 3 t ) , cos t t sin t

51.

1 2 1 , −one , 0 i 2 1 , −1 , 0

53.

i 1060.5625 six , 3 4 , 32 1 1060.5625 vi , iii 4 , 32

55.

1 nine sin 2 ( 3 t ) + 144 cos 2 ( iv t ) 0 , −iii sin ( 3 t ) , 12 cos ( 4 t ) ane 9 sin two ( 3 t ) + 144 cos 2 ( 4 t ) 0 , −3 sin ( iii t ) , 12 cos ( 4 t )

57.

T ( t ) = −12 13 sin ( iv t ) i + 12 13 cos ( 4 t ) j + 5 thirteen k T ( t ) = −12 xiii sin ( 4 t ) i + 12 13 cos ( 4 t ) j + five 13 k

59.

2 t , four t 3 , −eight t 7 2 t , four t 3 , −8 t 7

61.

sin ( t ) + 2 t e t 4 t 3 cos ( t ) + t cos ( t ) + t 2 due east t + t 4 sin ( t ) sin ( t ) + 2 t e t 4 t iii cos ( t ) + t cos ( t ) + t 2 e t + t 4 sin ( t )

63.

900 t vii + xvi t 900 t 7 + 16 t

65.

  1. This figure is a graph of a curve in 3 dimensions. The curve has asymptotes and from the above view, the curve resembles the secant function.
  2. Undefined or infinite

67.

r ' ( t ) = b ω sin ( ω t ) i + b ω cos ( ω t ) j . r ' ( t ) = b ω sin ( ω t ) i + b ω cos ( ω t ) j . To show orthogonality, notation that r ' ( t ) · r ( t ) = 0 . r ' ( t ) · r ( t ) = 0 .

69.

0 i + 2 j + 4 t j 0 i + 2 j + 4 t j

71.

1 3 ( 10 3 / 2 1 ) i 3 ( 10 3 / 2 1 )

73.


v ( t ) = g v ( t ) · v ( t ) = g d d t ( 5 ( t ) · v ( t ) ) = d d t k = 0 v ( t ) · five ' ( t ) + v ' ( t ) · 5 ( t ) = 0 2 v ( t ) · 5 ' ( t ) = 0 five ( t ) · v ' ( t ) = 0 . v ( t ) = k 5 ( t ) · five ( t ) = thou d d t ( v ( t ) · v ( t ) ) = d d t k = 0 v ( t ) · v ' ( t ) + v ' ( t ) · v ( t ) = 0 2 v ( t ) · v ' ( t ) = 0 5 ( t ) · v ' ( t ) = 0 .
The last statement implies that the velocity and acceleration are perpendicular or orthogonal.

75.

v ( t ) = ane sin t , ane cos t , v ( t ) = 1 sin t , 1 cos t , speed = v ( t ) = 3 2 ( sin t + cos t ) speed = v ( t ) = 3 two ( sin t + cos t )

77.

x 1 = t , y 1 = t , z 0 = 0 10 one = t , y one = t , z 0 = 0

79.

r ( t ) = eighteen , 9 r ( t ) = 18 , 9 at t = 3 t = iii

83.

five ( t ) = sin t , cos t , 1 v ( t ) = sin t , cos t , 1

85.

a ( t ) = cos t i sin t j + 0 j a ( t ) = cos t i sin t j + 0 j

87.

v ( t ) = sin t , 2 cos t , 0 v ( t ) = sin t , two cos t , 0

89.

a ( t ) = 2 2 , 2 , 0 a ( t ) = two 2 , 2 , 0

91.

5 ( t ) = sec 4 t + sec 2 t tan 2 t = sec two t ( sec two t + tan 2 t ) v ( t ) = sec 4 t + sec 2 t tan 2 t = sec 2 t ( sec two t + tan 2 t )

95.

0 , 2 sin t ( t i t ) 2 cos t ( 1 + one t 2 ) , 2 sin t ( i + ane t 2 ) + 2 cos t ( t 2 t ) 0 , ii sin t ( t 1 t ) 2 cos t ( 1 + one t 2 ) , 2 sin t ( 1 + 1 t 2 ) + 2 cos t ( t 2 t )

97.

T ( t ) = t ii t 4 + 1 , −1 t 4 + 1 T ( t ) = t 2 t 4 + 1 , −i t 4 + 1

99.

T ( t ) = ane 3 i , 2 , 2 T ( t ) = 1 iii one , ii , two

101.

3 4 i + ln ( ii ) j + ( 1 1 e ) j 3 4 i + ln ( two ) j + ( i 1 eastward ) j

Section 3.iii Exercises

105.

one 54 ( 37 iii / ii one ) 1 54 ( 37 3 / two ane )

113.

T ( 0 ) = j , T ( 0 ) = j , N ( 0 ) = i N ( 0 ) = i

115.

T ( t ) = two 6 , cos t sin t 6 , cos t + sin t 6 T ( t ) = 2 six , cos t sin t 6 , cos t + sin t half dozen

117.

N ( 0 ) = 2 2 , 0 , 2 2 N ( 0 ) = ii 2 , 0 , two 2

119.

T ( t ) = ane 4 t 2 + 2 < one , two t , ane > T ( t ) = one 4 t 2 + 2 < 1 , ii t , i >

121.

T ( t ) = 1 100 t two + xiii ( iii i + 10 t j + 2 k ) T ( t ) = 1 100 t 2 + xiii ( iii i + x t j + ii chiliad )

123.

T ( t ) = 1 9 t iv + 76 t 2 + 16 ( [ 3 t ii four ] i + 10 t j ) T ( t ) = ane 9 t 4 + 76 t 2 + 16 ( [ three t 2 4 ] i + 10 t j )

125.

Northward ( t ) = sin t , 0 , cos t N ( t ) = sin t , 0 , cos t

127.

Arc-length function: due south ( t ) = v t ; s ( t ) = 5 t ; r as a parameter of s: r ( s ) = ( 3 3 s v ) i + four s five j r ( s ) = ( 3 3 s 5 ) i + four s 5 j

129.

r ( s ) = ( ane + southward 2 ) sin ( ln ( one + s ii ) ) i + ( 1 + s two ) cos [ ln ( 1 + s 2 ) ] j r ( southward ) = ( 1 + s 2 ) sin ( ln ( 1 + south 2 ) ) i + ( 1 + s two ) cos [ ln ( 1 + s 2 ) ] j

131.

The maximum value of the curvature occurs at x = i . ten = 1 .

135.

κ 49.477 ( 17 + 144 t 2 ) three / two κ 49.477 ( 17 + 144 t 2 ) 3 / 2

139.

The curvature approaches cipher.

141.

y = 6 ten + π y = 6 ten + π and x + 6 y = 6 π x + half-dozen y = 6 π

143.

x + 2 z = π 2 x + 2 z = π 2

145.

a iv b iv ( b four x 2 + a 4 y ii ) 3 / 2 a 4 b 4 ( b 4 x 2 + a 4 y 2 ) 3 / 2

149.

one 4 ln 17 + 4 + 17 4 . 647 1 4 ln 17 + 4 + 17 four . 647

151.

The curvature is decreasing over this interval.

153.

κ = 6 x 2 / 5 ( 25 + 4 x 6 / 5 ) κ = 6 10 ii / 5 ( 25 + 4 x 6 / 5 )

Section 3.4 Exercises

155.

five ( t ) = ( 6 t ) i + ( ii cos ( t ) ) j v ( t ) = ( half-dozen t ) i + ( 2 cos ( t ) ) j

157.

v ( t ) = −iii sin t , 3 cos t , two t , five ( t ) = −iii sin t , three cos t , two t , a ( t ) = −3 cos t , −three sin t , two , a ( t ) = −3 cos t , −3 sin t , 2 , speed = nine + 4 t 2 speed = 9 + 4 t ii

159.

v ( t ) = −2 sin t j + iii cos t k , v ( t ) = −two sin t j + 3 cos t yard , a ( t ) = −2 cos t j iii sin t k , a ( t ) = −2 cos t j iii sin t k , speed = 4 sin 2 t + 9 cos 2 t speed = 4 sin 2 t + nine cos 2 t

161.

v ( t ) = east t i e t j , five ( t ) = e t i due east t j , a ( t ) = e t i + due east t j , a ( t ) = e t i + e t j , speed = v ( t ) = e ii t + east −two t v ( t ) = e 2 t + e −2 t

165.

v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j , v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j ,
a ( t ) = ( ω ii sin ( ω t ) ) i + ( ω two cos ( ω t ) ) j , a ( t ) = ( ω two sin ( ω t ) ) i + ( ω 2 cos ( ω t ) ) j ,
speed = ω 2 2 ω ii cos ( ω t ) + ω 2 cos two ( ω t ) + ω two sin 2 ( ω t ) = 2 ω 2 ( ane cos ( ω t ) ) speed = ω ii 2 ω two cos ( ω t ) + ω ii cos 2 ( ω t ) + ω 2 sin 2 ( ω t ) = ii ω ii ( 1 cos ( ω t ) )

167.

v ( t ) = ix + 4 t ii v ( t ) = ix + iv t two

169.

v ( t ) = e −five t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −xx east −5 t v ( t ) = e −v t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −20 e −5 t

171.

a ( t ) = e −five t ( sin t 5 cos t ) five e −5 t ( cos t v sin t ) , a ( t ) = east −five t ( sin t 5 cos t ) v e −5 t ( cos t 5 sin t ) , east −5 t ( cos t 5 sin t ) + five e −5 t ( sin t + 5 cos t ) , 100 eastward −v t eastward −5 t ( cos t 5 sin t ) + 5 due east −5 t ( sin t + 5 cos t ) , 100 east −5 t

179.

The range is approximately 886.29 m.

181.

five = 42.xvi v = 42.16 m/sec

183.

r ( t ) = 0 i + ( 1 vi t 3 + 4.five t 14 3 ) j + ( t iii 6 i 2 t + 1 three ) k r ( t ) = 0 i + ( i 6 t iii + four.v t 14 3 ) j + ( t three 6 1 2 t + one iii ) k

185.

a T = 0 , a T = 0 , a N = a ω 2 a North = a ω 2

187.

a T = three eastward t , a T = 3 east t , a Northward = two east t a Due north = 2 e t

189.

a T = 2 t , a T = 2 t , a N = 2 a Due north = two

191.

a T 6 t + 12 t 3 1 + t 4 + t ii , a T 6 t + 12 t 3 1 + t iv + t two , a N = 6 1 + 4 t 2 + t 4 ane + t ii + t 4 a N = 6 one + iv t two + t 4 1 + t 2 + t 4

193.

a T = 0 , a T = 0 , a N = 12 π ii a Due north = 12 π 2

195.

r ( t ) = ( −ane m cos t + c + i g ) i + ( sin t grand + ( v 0 + one m ) t ) j r ( t ) = ( −ane m cos t + c + one m ) i + ( sin t m + ( v 0 + 1 1000 ) t ) j

201.

a T = 0.43 m/sec 2 , a T = 0.43 k/sec ii ,
a N = 2.46 chiliad/sec 2 a Due north = ii.46 chiliad/sec ii

Review Exercises

203.

False, d d t [ u ( t ) × u ( t ) ] = 0 d d t [ u ( t ) × u ( t ) ] = 0

205.

Simulated, it is | r ( t ) | | r ( t ) |

211.

r ( t ) = t , 2 t 2 eight , −2 t two eight r ( t ) = t , ii t 2 viii , −two t ii 8

213.

u ( t ) = ii t , 2 , 20 t iv , u ( t ) = 2 t , two , 20 t 4 , u ( t ) = 2 , 0 , 80 t 3 , u ( t ) = two , 0 , lxxx t 3 , d d t [ u ( t ) × u ( t ) ] = −480 t 3 160 t 4 , 24 + 75 t 2 , 12 + 4 t , d d t [ u ( t ) × u ( t ) ] = −480 t three 160 t 4 , 24 + 75 t 2 , 12 + iv t , d d t [ u ( t ) × u ( t ) ] = 480 t 3 + 160 t 4 , −24 75 t 2 , −12 4 t , d d t [ u ( t ) × u ( t ) ] = 480 t 3 + 160 t four , −24 75 t 2 , −12 iv t , d d t [ u ( t ) · u ( t ) ] = 720 t 8 9600 t 3 + 6 t two + 4 , d d t [ u ( t ) · u ( t ) ] = 720 t 8 9600 t 3 + 6 t 2 + 4 , unit of measurement tangent vector: T ( t ) = 2 t 400 t 8 + 4 t 2 + 4 i + 2 400 t 8 + 4 t two + iv j + 20 t 4 400 t 8 + iv t 2 + 4 k T ( t ) = 2 t 400 t 8 + iv t 2 + 4 i + ii 400 t 8 + 4 t two + 4 j + 20 t 4 400 t eight + 4 t 2 + 4 yard

215.

ln ( 4 ) 2 2 i + 2 j + 2 ( 2 + two ) π k ln ( 4 ) 2 2 i + ii j + 2 ( 2 + 2 ) π grand

217.

37 2 + ane 12 sinh −1 ( 6 ) 37 2 + 1 12 sinh −1 ( half-dozen )

219.

r ( t ( s ) ) = cos ( 2 s 65 ) i + 8 s 65 j sin ( two due south 65 ) g r ( t ( s ) ) = cos ( ii southward 65 ) i + 8 due south 65 j sin ( 2 s 65 ) k

221.

eastward 2 t ( e ii t + one ) 2 e ii t ( due east 2 t + 1 ) 2

223.

a T = eastward 2 t ane + e 2 t , a T = e 2 t 1 + e 2 t , a N = ii e 2 t + four e ii t sin t cos t + 1 1 + due east 2 t a Due north = 2 e 2 t + four e two t sin t cos t + 1 1 + e ii t

225.

v ( t ) = two t , 1 t , π cos ( π t ) v ( t ) = 2 t , 1 t , π cos ( π t ) m/sec, a ( t ) = 2 , 1 t ii , π 2 sin ( π t ) chiliad/sec ii , a ( t ) = two , 1 t two , π 2 sin ( π t ) m/sec two , speed = iv t two + ane t ii + π two cos 2 ( π t ) speed = 4 t two + one t two + π two cos ii ( π t ) m/sec; at t = 1 , t = 1 , r ( i ) = one , 0 , 0 r ( 1 ) = 1 , 0 , 0 m, v ( i ) = 2 , 1 , –π 5 ( i ) = 2 , 1 , –π grand/sec, a ( one ) = 2 , −1 , 0 a ( 1 ) = 2 , −ane , 0 m/sec2, and speed = 5 + π 2 speed = 5 + π 2 m/sec

227.

r ( t ) = 5 0 t g ii t 2 j , r ( t ) = v 0 t k two t 2 j , r ( t ) = five 0 ( cos θ ) t , v 0 ( sin θ ) t , g 2 t 2 r ( t ) = 5 0 ( cos θ ) t , v 0 ( sin θ ) t , g ii t 2

Openstax Calculus Volume 3 Solutions,

Source: https://openstax.org/books/calculus-volume-3/pages/chapter-3

Posted by: cogswellreacquink.blogspot.com

0 Response to "Openstax Calculus Volume 3 Solutions"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel